	Sengineering a standard																	
	CBCS SCIEME																	
USN	ı [UU T	900 	900	20115			Ady	er, Mangal	18	PHY1	2/22
			st/So		46		stor				Fvo		J	T., I	.	ngust	2021	
	Г	11	st/Se	con	u 50	eme				-		ysic		, Jui	y/A	ugust	2021	
т:.		2 1						3				,	•		Cr	<u>с</u> . М	l 1	00
1 11	ne:	51	nrs.								3				IV	lax. Ma	arks: 1	00
						Note						questi = 3 × 1		h =	6.63	× 10 ⁻³⁴	⁴ JS :	
	2. Physical constants : $C = 3 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ JS}$; $g = 9.8 \text{ m/s}^2$; $\epsilon_0 = 8.856 \times 10^{-12} \text{ F/m}$; $M = 9.11 \times 10^{-31} \text{ kg}$;																	
	$e = 1.6 \times 10^{-19} C$; $N_A = 6.02 \times 10^{26} / K$ mole; $K = 1.38 \times 10^{-23} J / K$															J/K		
1	a.															Simpl		
	b.	b. Define Shock waves. Mention its applications. (06)											(10 M (06 M					
	c.		A mass 0.5kg causes an extension 0.03m in a spring and the system is set for oscillation															
		ľ	Find force constant of the spring, angular frequency and period of resulting oscillations. (04 Marks)															
2	a.	Ţ	What a	re Do		d Os	cilla	tions	2 Give	the th	eory (of dam	ned o	cillat	ions a	and disc	niss the	Case
		C	fover	dam	ping				C					/		ind disc	(10 M	
	b. c.					-		-				the help		-		maxim	(06 M	
	C.															tion if i		
			s 0.5m				G)									(04 M	
3	a.	Ι	Define	Your	ng's	modı	ulus,	Rigi	dity m	odulu	s and I	Poissor	n's rat	io. De	rive t	he relat	ion bet	ween
	b.		hem. Describ	a Str		ofter	ina	and S	train k	arden	ing		G	5			(10 M	
	с.		Describe Strain softening and Strain hardening. (06 Marks) Calculate the force required to produce an extension of 1mm in steel wire of length 2m and															
		d	liamete	er 1m	m. I	f give	en Y	= 2 >	< 10 ¹¹]	N/m^2 .		6					(04 M	arks)
4	a.	S	state H	look'	's la	w. D	eriv	e an	expres	ssion	for Co	ouple 1	require	ed to	produ	uce uni	t twist	in a
		u	niforn	n cyl	indri	cal r	od f	ixed	at one	e end	and th	ne Cou	ple b	eing a	pplie	d at the	e other (08 M	
	b.					al Per	ndulı	ım? C	Give th	ie exp	ression	n for pe	eriod c	ofosci	llatio	n and w	vrite its	,
	c.		pplica Solid			iere d	of ra	dius	10.3m	is su	biected	d to no	ormal	pressi	ire of	f 10N/n	(06 M n ² actir	
)		over the surface. Determine the change in its volume. Given Bulk modu										s of le	ad is					
		4	.58 ×	10101	N/m ²												(06 M	arks)
5	a.		state ar										_				(06 M	,
	b.				-	-						plicatio $\pm xx^2$			ype.		(09 M	,
	c.	C	alcula	ite the	e cur	101	A.C	iven	A –	(1 + y	z)a _x	$+xy^2$	+ x y	a _z .			(05 M	arks)
6	a.											well's			• 1	,	(10 M	
	b.		Vhat 1 efracti				-				ı expr	ression	ior r	umer	ical a	aperture	• 1ntern (06 M	
	c.	F	ind th	e att	tenua	ation	in a	an op	tical f	fiber o		-	0m. V	Vhen	a lig	ht signa	al of p	ower
		1	00mw	: Em	erge	s out	ot th	ne fib	er with	-	wer 90 of 2	mw.					(04 M	arks)
	6		Ş															
		0																

18PHY12/22

- 7 a. State Heisenberg's uncertainity principle. Show that electron does not exist inside the nucleus by this principle. (06 Marks)
 - b. Explain the terms Spontaneous emission and stimulated emission. Derive the expression for energy density of radiation under equilibrium condition interms of Einstein's coefficients. (10 Marks)
 - c. An electron is bound in an one dimensional potential well of width 1A°, but infinite height.
 Find its energy values in ground state and in the first two excited states. (04 Marks)
- 8 a. Using time independent wave equation, find Energy Eigen values and Eigen functions for a particle in one dimensional potential well of infinite height. (09 Marks)
 - b. Describe the Construction and working of CO_2 Laser with energy level diagram. (07 Marks)
 - c. The average output Power of Laser source emitting a laser beam of wavelength 6328A° is 5mw. Find the number of Photons emitted per second by the laser source. (04 Marks)
- 9 a. Define Fermi energy and Fermi factor. Derive an expression for Fermi energy at Zero Kelvin.
 (09 Marks)
 - b. Obtain the expression for electrical conductivity of Semi Conductor. (07 Marks)
 - c. If a NaC ℓ crystal is subjected to an electric field of 1000V/m and the resulting Polarization is 4.3×10^{-8} C/m². Calculate the dielectric constant of NaC ℓ . (04 Marks)
- 10 a. Discuss any two success of Quantum Free Electron theory.
 - b. State Hall effect. Obtain an expression for Hall Coefficient.
 - c. Derive Calusius Mossotti equation.

(06 Marks) (08 Marks) (06 Marks)

2 of 2